

Relevant Publications in TD Men's Health Medical & Marketing Network

Committed to the Science of Improving Men's Health

Issue No. 5

Fernandez-Garcia 2022

PDF

STRONGER TOGETHER

Metformin, testosterone, or both in men with obesity and low testosterone: A double-blind, parallel-group, randomized controlled trial. Fernandez-Garcia, JC et al. Metabolism 136 (2022) 155290

Beneficial for BH

Stoplight system:

- Green light means it is supportive/aligned to BH product use in clinical practice.
- Yellow light means it is neutral or informational on the therapeutic area or BH related products.
- Red means it is not supportive/aligned to BH product use in clinical practice or may have negative impact to BH products.

Innovating for Well-being

Important: This is an internal document. Please check local regulatory and compliance before using any part of this material.

Metabolism. Clinical and Experimental

Volume 136, 155290, November 01, 2022

Metabolism

魙

al and Experimental

er in Chief Christos S Manazoras, MD, DSc, PhD h.c. ese

Metformin, testosterone, or both in men with obesity and low testosterone: a double-blind, parallel-group, randomized controlled trial (TESEO study)

STUDY DESIGN: the **TESEO** (Testosterone, mEtformin, or both, for low teStosterone in mEn with Obesity) trial – 1-year, single-center, double-blind, parallel-group, randomized, placebo-controlled independent trial

Department of Endocrinology and Nutrition at the Virgen de la Victoria University Hospital (Malaga, Spain)

INCLUSION criteria (+)

- male gender
- age 18-50 years
- DM2 diagnosis
- obesity (BMI≥30 kg/m2)
- reduced serum concentrations of testosterone (total <230 ng/dl (8 nmol/l) or free <70 pg/ml (240 pmol/l)

*The study protocol was approved by the institutional review boards and the local ethics committee.

EXCLUSION criteria (-)

- ✓ DM (fasting plasma glucose ≥126 mg /dl [7 mmol/l]
- ✓ glycated hemoglobin ≥6.5 %
- evidence of intercurrent pituitary disease
- hyperprolactinemia
- increased LH levels
- ✓ additional pituitary hormone deficiencies
- ✓ hemochromatosis, malignancy
- ✓ PSA>4 ng/ml
- ✓ hematocrit >50 %
- severe lower urinary tract symptoms
- hepatic, renal, or cardiovascular disease and uncontrolled hypertension
- ✓ androgens, phosphodiesterase 5 inhibitors, clomiphene, human chorionic gonadotropin, or alprostadil admission
- ✓ abnormal pubertal development

✓ Number of patients: 106 men with obesity and low testosterone
✓ Mean age – 37.9 years
✓ Mean BMI – 42.5 kg/m²

RANDOMIZATION: 4 groups

2xDay placebo tablets & injections in weeks 0, 6, 18, 30, 42 Metformin (n=27)

2xDay 850 mg metformin + placebo injections in weeks 0, 6, 18, 30, 42 Testosterone (n=26)

2xDay placebo tablets + 1000 mg TU injections in weeks 0, 6, 18, 30, 42

2xDay 850 mg metformin + 1000 mg TU injections in weeks 0, 6, 18, 30, 42

1 year follow-up

Study samples measurement: immunoassay, electrochemiluminescence, high-performance liquid chromatography-mass spectrometry

PRIMARY outcome:

changes in insulin
resistance (HOMA-IR)

SECONDARY outcomes:

- ✓ changes in total and free serum testosterone
- Changes in body composition and metabolic variables Changes in erectile function (measured by the IIEF-5-Q) Changes in HRQoL (measured by the AMS scale)

Trial population

No significant between-group differences in baseline characteristics: age, education, smoking status, BP, BMI, waist circumference, total & free testosterone and free testosterone, LH, hematocrit, glucose, glycated hemoglobin, insulin, HOMA-IR, cholesterol, HGL, LDL, triglycerides, PSA, IIEF-5 & AMS total score.

8

Insuline resistance

HOMA-IR index decreased significantly in all active groups compared to placebo

STUDY RESULTS

Testosterone concentations

STUDY RESULTS

	Metformin vs placebo	Testosterone vs placebo	Combination vs placebo	Combination vs testosterone	
Total testosterone - ng/dl	-1.6 (-42.5 to 39.2) p = 0.937	13.1 (-27.3 to 53.5) $p = 0.524$	$\frac{42.9}{83.7} (2.1 \text{ to}) = 0.040$	-29.7 (-10.7 to 70.1) p = 0.149	
	[0.3 (-38.1 to 38.6) p = 0.990]	[17.2 (-20.8 to 55.1) p = 0.375]	[46.9 (8.6 to 85.3) p = 0.016]	[29.8 (-8.2 to 67.7) p = 0.124]	
Free testosterone	2.2 (-10.3 to 14.7) $p =$ 0.727	6.7 (-5.7 to 19.1) $p = 0.288$	14.9 (2.7 to 27.4); <i>p</i> = 0.020	8.2 (-4.2 to 20.5) $p = 0.195$	*p-Values <0.05 were considered t
- pg/	[2.5 (-9.4 to 14.3) p = 0.683]	[7.5 (-4.2 to 19.2) p = 0.211]	[15.5 (3.6 to 27.3) p = 0.011]	[8.0 (-3.8 to 19.7) p = 0.183]	indicate statistical significance

The combination of metformin plus testosterone **significantly increased** total and free testosterone concentrations, compared to placebo.

Body weight and composition

Metformin vs Combination vs Combination vs Testosterone vs placebo placebo placebo testosterone *p-Values <0.05 were -1.7 (-3.0 to -1.0 (-2.6 to -1.8 (-3.1 to -0.8 (-2.1 to Fat-free considered to $(0.3) p = 0.124^{\circ}$ $-0.5) p = 0.007^{\circ}$ $(0.4) p = 0.206^{\circ}$ -0.4) p =mass - kg indicate 0.011 statistical significance 0.990] 0.3751 0.016] 0.124]

STUDY RESULTS

The combination of metformin plus testosterone **significantly decreased** fat mass compared to placebo.

Erectile function

None of the treatments **significantly improved** erectile function compared to placebo (p = 0.247).

<u>HRQoL</u>

There were **no significant** between-group **changes** in the AMS severity category at 1 year. The AMS score did not differ between the study groups (p = 0.192).

CONCLUSIONS

- ✓ Total and free testosterone increased in the combination group
- Decreased fat mass in the metformin and combination group
- ✓ No significant changes in other variables between study group

Among non-diabetic men with obesity and low testosterone concentrations, the combination of

- metformin plus testosterone,
- metformin only,
- testosterone only,

compared to placebo, **reduced insulin resistance** with no evidence of additive benefit.

The National Medical Research Center for Endocrinology, Russian Federation

THE INCIDENCE AND AGGRAVATING FACTORS OF MALE HYPOGONADISM IN TYPE 2 DIABETES, 2022

"The remedy comes too late when the disease has gained strength by long delays".

(Ovid)

OBJECTIVES: To evaluate the prevalence and aggravating factors of male hypogonadism in patients with type 2 diabetes mellitus.

STUDY DESIGN: a full-design, cross-sectional, screening, single-center, non-interventional study of men with T2DM.

STUDY PERIOD: October 2021 – January 2022

INCLUSION criteria (+)

- male gender
- age 40–65 years
- ✓ DM2 diagnosis

*Men who refused to participate in a clinical trial were also excluded. The clinical trial was approved by the local Ethical Committee.

EXCLUSION criteria (-)

- ✓ disorders of sex development
- ✓ absence of at least one of testicles
- genital injuries and/or genital surgery
- androgens, anabolic steroids, gonadotropins, antiestrogens or antiandrogens current administration or in anamnesis
- \checkmark alcoholism and drug addiction

Number of patients: 505 men with T2DM
Median age – 58.0 years (range 52.0 – 62.0 years)
Median duration of T2 DM – 11.0 years (range 6.0 – 16.0 years)
Total testosterone measurement by isotope dilution liquid chromatography/tandem mass spectrometry (ID LC/MS)

*ID LC-MS provides the most specific and sensitive method for the analysis of testosterone defficiency

3 more centers in Russian Federation

RESULTS: laboratory confirmed hypogonadism was present in **355** out of 505 men with DM T2 (70.3%).

Characteristics	Hypogonadism (n=355)	Eugonadism (n=150)	P-value
Total testosterone nmol/l	8,5 [6,7; 10,2]	15,0 [13,2; 17,7]	<0,001*
BMI kg/m2	33,0 [29,0; 37,4]	30,4 [27,3; 33,3]	<0,001*
HbA1c, %	8,7 [7,5; 10,3]	8,1 [6,7; 9,5]	0,002*
HDL mmol/l	0,97 [0,84; 1,11]	1,03 [0,90; 1,17]	0,006*
Triglycerides mmol/l	2,01 [1,35; 2,94]	1,67 [1,17; 2,33]	<0,001*
Metformin treatment	64,2	51,3	0,009**
Diabetic foot syndrome	33,0	23,3	0,041**

Patients <u>WITH</u> hypogonadism:

*p-Values <0.05 were considered to indicate statistical significance

- ✓ statistically significantly more severe degree of obesity
- ✓ worse compensation of carbohydrate metabolism
- ✓ lower HDL levels and high TG
- ✓ higher metformin admission (as hypoglycemic therapy)
- higher frequency of diabetic foot syndrome (DFS)

Comparison of patients with hypogonadism depending on the presence of obesity

Characteristics	Obesive (n=214)	Non-obesive (n=141)	P-value	
Total testosterone nmol/l	8,1 [6,4; 10,0]	9,2 [7,5; 10,6]	0,005*	
BMI kg/m2	35,3 [32,9; 39,5]	27,2 [25,8; 29,0]	<0,001*	
Triglycerides mmol/l	2,21 [1,57; 3,06]	1,50 [1,16; 2,27]	<0,001*	
Metformin treatment	72,0	53,4	0,002**	
*p-Values <0.05 were considered t				

*p-Values <0.05 were considered to indic statistical significance

Statistically significant differences between groups:

- ✓ total testosterone levels lower in obese men
- ✓ Triglycerides higher in obese men
- ✓ Patients with obesity were more likely to use metformin

Comparison of non-obesive patients depending on the presence of hypogonadism (additional comparative analysis)

Characteristics	Hypogonadism (n=103)	Eugonadism (n=71)	P-value
Total testosterone nmol/l	9,2 [7,5; 10,6]	16 [13,9; 18,4]	<0,001*
HbA1c, %	9,1 [7,9; 10,5]	8,0 [6,7; 9,5]	0,002*
HDL mmol/l	0,98 [0,85; 1,16]	1,06 [0,90; 1,21]	0,042*

*p-Values <0.05 were considered to indica statistical significance

Statistically significant differences between groups:

✓ glycated hemoglobin – higher in men with hypogonadism
✓ HDL – lower in men with hypogonadism

<u>CONCLUSIONS</u>: this study demonstrates that the measurement of serum TT by **isotope dilution liquid chromatography/tandem mass spectrometry** improves biochemical hypogonadism diagnosis.

VS

Chemiluminescent microparticle immunoassay, CMIA & Capillary electrophoresis (CE) (2019)

33,7%

Isotope dilution liquid chromatography/tandem mass spectrometry (2022)

70.3%

- Hypogonadism in men with DM T2 is associated with obesity and worse compensation of carbohydrate metabolism.
- ✓ Taking into account the high prevalence of hypogonadism, a higher priority should be given to its diagnostics.
- ✓ A wide introduction of isotope dilution LC-MS method in clinical practice could enhance the accuracy of hypogonadism diagnosis.

Elena Annenkova (Medical Advisor) & Tatiana Kravtsova (Brand Manager) Men's Health, Besins Healthcare RUS 2022